Look at the following equation:

$$
a+b=c
$$

How many positive integer solutions can you find for a, b and c ?
whole number

Challenge

How many solutions are there in total? Explain your answer.

$a+b=c$

Here are a few examples:

$$
\begin{array}{ll}
1+2=3 & a=1, b=2, c=3 \\
4+3=7 & a=4, b=3, c=7 \\
1+1=2 & a=1, b=1, c=2
\end{array}
$$

Now look at this equation. What has changed?

$$
a^{2}+b^{2}=c^{2}
$$

How many positive integer solutions can you find for a, b and c ?

```
whole number
```

Stuck?
Try writing out a list of square numbers first.
You can use a calculator for squares bigger than 15.

$$
a^{2}+b^{2}=c^{2}
$$

Here are two solutions for this equation:

$$
\left.\begin{array}{rlrl}
3^{2}+4^{2} & =9+16 & & \begin{array}{l}
a=3 \\
\\
\end{array} \\
& =25 \\
& =5^{2} \\
c=5
\end{array}\right)
$$

What is the link between these two solutions?

Now look at this equation. What has changed?

$$
a^{3}+b^{3}=c^{3}
$$

How many positive integer solutions can you find for a, b and c ?

Stuck?

Try writing out a list of cube numbers first. You can use a calculator for cubes bigger than 5 .

Challenge
Got an answer?
Write an explanation to convince a partner that you are correct.

Pierre de Fermat (1601-1665)

French

margin is too narrow to contain..."

Pierre de Fermat
(1601-1665)
French
"lt is impossible to separate a cube into two cubes, or a fourth power into two fourth powers, or in general, any power higher than the second, into two like powers. I have discovered a truly marvellous proof of this, which this
margin is too narrow to contain..."

