The Basics of Algebra Tiles

1 Each red tile represents 1.

Each yellow tile represents x.

This set of tiles would represent the expression $2 x+3$:

This set of tiles would represent $4 x+7$:

© NorledgeMaths

Negative Numbers

-1 This tile represents -1.

This tile represents $-x$.

This set of tiles would represent the expression $2 x-3$:

This set of tiles would represent $7-4 x$:

© NorledgeMaths

Positives and negatives cancel each other out.
This set of tiles represents $4 x-2 x+3-4$

If we "cancel out" positives and negatives, we are left with:

$$
\longdiv { - 1 }
$$

This represents $2 x-1$, which is the simplified version of the starting set of tiles.

Quadratic Expressions

Each green tile represents x^{2}.

This set of tiles represents the expression $x^{2}+4:$

This set of tiles represents $x^{2}+3 x+2$:

© NorledgeMaths

Factorising Quadratics (All Positives)

This set of tiles represents $x^{2}+5 x+6$.

To factorise, arrange the tiles into a complete rectangle.

Look at the side lengths to find the factorised version.
The answer is $(x+3)(x+2)$.

Factorising Quadratics (Negative b)

This set of tiles represents $x^{2}-5 x+6$.

To factorise, arrange the tiles into a complete rectangle.

Look at the side lengths to find the factorised version.
The answer is $(x-3)(x-2)$.
© NorledgeMaths

Factorising Quadratics (Negative c)

This set of tiles represents $x^{2}+2 x-8$.

Arrange the x^{2} and x tiles in the best rectangle possible.

Add pairs of x and $-x$ blocks until there is a complete rectangle. You may also need to move some of the unit blocks.

Stage 1 Not a rectangle

Use the side lengths to get your answer. $(x+4)(x-2)$
© NorledgeMaths

Solving Simple Equations

This set of tiles represents the equation $3 x=6$.

We can solve the equation by sharing out into 3 equal groups.

Each x block has 2 red units when they are shared out equally. This means that $x=2$.

Algebraic representation

$$
\left.\begin{aligned}
3 x & =6 \\
x & =2
\end{aligned} \right\rvert\, \div 3
$$

Solving Simple Equations

This set of tiles represents the equation $x+5=8$.

We can solve the equation taking the same number of tiles from each side.

We can take 5 red tiles off each side. This means that $x=3$.

Algebraic representation

$$
x+5=\left.8\right|_{-5}
$$

Solving Two-Step Equations

This set of tiles represents the equation $2 x+2=6$.

We can take 2 red unit tiles off both sides of the equation.

Each x block has 2 red units when they are shared out equally. This means that $x=2$.

Algebraic representation

$$
2 x+2=6
$$

$$
-2
$$

$$
2 x=4
$$

$$
x=\left.2\right|^{\div 2}
$$

Solving Two-Step Equations with Negative Units

This set of tiles represents the equation $2 x-2=6$.

We can add red units to cancel out the blue units. We must do the same thing to both sides.

The blocks on the left cancel out to leave:

Sharing out equally means:

Algebraic representation

$$
\begin{array}{rl|l}
2 x-2 & =6 \\
2 x & =8 & \\
x & =4 & \div 2
\end{array}
$$

This set of tiles represents the equation $2 x+2=6+x$.

We can take a yellow x tile off both sides to leave:

We can then take 2 red unit tiles off both sides to leave:

So the solution is $x=4$.
Algebraic representation

$$
\left.\begin{aligned}
2 x+2 & =6+x \\
x+2 & =6 \\
x & =4
\end{aligned} \right\rvert\, \begin{aligned}
-x \\
-2
\end{aligned}
$$

This set of tiles represents the equation $4 x+4=2 x+6$.

We can take 2 yellow x tile off both sides to leave:

We can then take 4 red unit tiles off both sides to leave:

Algebraic representation
Sharing equally gives:

$$
\left.\begin{array}{rl|l}
4 x+4 & =2 x+6 & \\
2 x+4 & =6 \\
2 x & =2 & -2 x \\
x & =1
\end{array} \right\rvert\, \begin{array}{r}
-4 \\
\div 2
\end{array}
$$

© NorledgeMaths

This set of tiles represents $3 x+6$.

To factorise, arrange the tiles into identical groups.

There are 3 identical groups.

Each group has an x tile and 2 red units.
This is written as $x+2$.
We have 3 groups of $x+2$.

Algebraic representation

Number of groups $r^{3(x+2)}$ What's in each group

This set of tiles represents $4 x+6$.

Arrange into identical groups.

There are 2 identical groups.

Each group has $2 \times$ tiles and 3 red units.
This is written as $2 x+3$.
We have 2 groups of $2 x+3$.

Algebraic representation

Number of groups $\operatorname{That's~in~each~group~}^{2(2 x+3)}$

Completing the Square

This set of tiles represents $x^{2}+2 x+3$.

Arrange into the biggest possible square.

The square has side length $(x+1)$. There are 2 red units left.
The answer is $(x+1)^{2}+2$.
 red tiles left over.

Completing the Square

This set of tiles represents $x^{2}+4 x+3$.

1

Arrange into the biggest possible square.

The square has side length $(x+2)$. We need to borrow 1 tile.
The answer is $(x+2)^{2}-1$.

© NorledgeMaths

